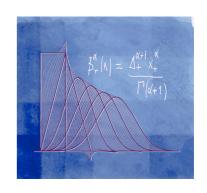


Sparse stochastic processes

Chapter 6 Splines and wavelets

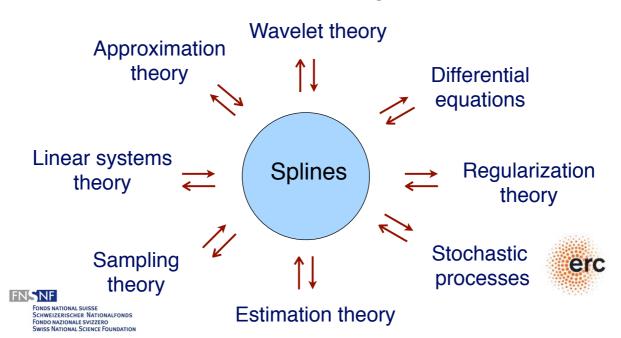
Prof. Michael Unser, LIB



March 2017 EDEE Course

Splines as a unifying mathematical concept

Functional analysis



Signal processing

Numerical analysis

CONTENT

- 6.1 From Legos to wavelets
- 6.2 Basic concepts and definitions
 - Splines and operators
 - Riesz basis
- 6.3 First-order exponential splines and wavelets
- 6.4 Generalized B-spline basis
- 6.5 Generalized operator-like wavelets

3

Fourier-multiplier operators

Linear shift-invariant operator $L: \mathcal{X}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ with $\mathcal{S}(\mathbb{R}^d) \subseteq \mathcal{X}(\mathbb{R}^d) \subseteq \mathcal{S}'(\mathbb{R}^d)$

- Frequency response: $\widehat{L}(\omega) = \mathcal{F}\{L\delta\}(\omega)$ For all $\varphi \in \mathcal{X}(\mathbb{R}^d)$, $L\varphi(r) = \mathcal{F}^{-1}\{\widehat{\varphi}(\omega)\widehat{L}(\omega)\}(r)$
- Null space of L: $\mathcal{N}_{\mathrm{L}} = \{p_0 \in \mathcal{X}(\mathbb{R}^d) : \mathrm{L}\{p_0\} = 0\}$

Proposition

If L is LSI and $p_{\boldsymbol{n}}(\boldsymbol{r}) = \mathrm{e}^{\langle \boldsymbol{z}_0, \boldsymbol{r} \rangle} \boldsymbol{r}^{\boldsymbol{n}} \in \mathcal{N}_L$ with $\boldsymbol{z}_0 \in \mathbb{C}^d$, then \mathcal{N}_L does necessarily include all **exponential monomials** of the form $p_{\boldsymbol{m}}(\boldsymbol{r}) = \mathrm{e}^{\langle \boldsymbol{z}_0, \boldsymbol{r} \rangle} \boldsymbol{r}^{\boldsymbol{m}}$ with $\boldsymbol{m} \leq \boldsymbol{n}$. If \mathcal{N}_L is finite-dimensional, it can only consist of atoms of that particular form.

lacksquare Green's function of L (if it exists): ho_L such that $L
ho_L=\delta$

Primary Green's function:
$$ho_{
m L}(m{r})=\mathcal{F}^{-1}\left\{rac{1}{\widehat{L}(m{\omega})}
ight\}(m{r})$$

Many equivalent Green's function: $ho_{
m L}+p_0$ where $p_0\in\mathcal{N}_{
m L}$

Spline-admissible operators

Definition

The Fourier-multiplier operator $L: \mathcal{X}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ with frequency response $\widehat{L}(\boldsymbol{\omega})$ is called **spline admissible** if $\rho_L = \mathcal{F}^{-1}\{1/\widehat{L}(\boldsymbol{\omega})\}$ is an ordinary function of slow growth.

Definition

The Fourier-multiplier $\widehat{L}(\omega)$ is **of order** $\gamma \in \mathbb{R}^+$ if there exists $R \in \mathbb{R}^+$ and C such that $C|\omega|^\gamma \leq |\widehat{L}(\omega)|, \qquad \text{for all } |\omega| \geq R \text{ where } \gamma \text{ is critical.}$

Example 1: D^{γ} with frequency response $(j\omega)^{\gamma}$ is spline-admissible of order γ

$$\rho_{\mathrm{D}^{\gamma}}(r) = \mathcal{F}^{-1}\left\{\frac{1}{(\mathrm{j}\omega)^{\gamma}}\right\}(r) = \frac{r_{+}^{\gamma-1}}{\Gamma(\gamma)}$$

- **Example 2:** Partial differential operator $L_N = \sum_{|n| < N} a_n \partial^n$ with $a_n \in \mathbb{R}^d$
 - Existence of Green's function follows from Malgrange-Ehrenpreis theorem
 - lacksquare Operator is called *elliptic* if $\widehat{L}_N(oldsymbol{\omega})$ vanishes at origin and nowhere else
 - lacktriangleright If \mathcal{L}_N is of order γ than it is also called *quasi-elliptic*

5

Spline and operators

Definition

The function s(r) (possibly of slow growth) is called a **cardinal** L-spline

$$\Leftrightarrow \operatorname{Ls}(oldsymbol{r}) = \sum_{oldsymbol{k} \in \mathbb{Z}^d} a[oldsymbol{k}] \delta(oldsymbol{r} - oldsymbol{k})$$

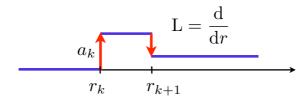
Definition

The function s(r) (possibly of slow growth) is a **nonuniform** L-spline with knots $\{r_k\}_{k\in S}$

$$\Leftrightarrow \operatorname{L}s(\boldsymbol{r}) = \sum_{k \in S} a_k \delta(\boldsymbol{r} - \boldsymbol{r}_k)$$

$$\implies s(\mathbf{r}) = p_0(\mathbf{r}) + \sum_{k \in S} a_k \rho_{\mathrm{L}}(\mathbf{r} - \mathbf{r}_k)$$

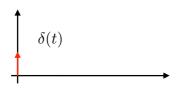
Spline theory: (Schultz-Varga, 1967; Jerome-Schumaker 1969)

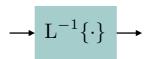


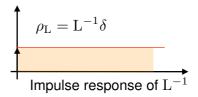
6

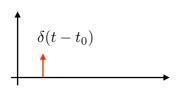
Innovation-based synthesis

$$L = \frac{d}{dt} = D \implies L^{-1}$$
: integrator

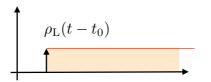


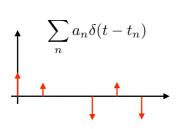


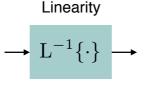


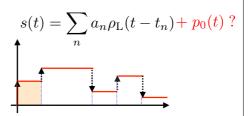


Translation invariance









7

Riesz bases

Definition: A sequence of functions $\{\phi_k(r)\}_{k\in\mathbb{Z}}$ in $L_2(\mathbb{R}^d)$ forms a **Riesz basis** if and only if there exist two constants A and B such that

$$A\|c\|_{\ell_2} \leq \|\sum_{k \in \mathbb{Z}} c_k \phi_k(\boldsymbol{r})\|_{L_2(\mathbb{R}^d)} \leq B\|c\|_{\ell_2} \quad \text{for any sequence } c = (c_k) \in \ell_2.$$

- Continuous-discrete norm equivalence: $||s||_{L_2} \asymp ||c||_{\ell_2}$
- Ensures stability of representation
- Implies linear independence of $\{\phi_k(r)\}_{k\in\mathbb{Z}}$
- \blacksquare Orthogonality \Leftrightarrow A=B=1 (Parseval's relation)

Theorem: Let $\phi(r) \in L_2(\mathbb{R}^d)$ be a B-spline-like generator with Fourier transform $\hat{\phi}(\omega)$. Then, $\{\phi(r-k)\}_{k\in\mathbb{Z}^d}$ forms a Riesz basis with Riesz bounds A and B if and only if

$$0 < A^2 \le \sum_{\boldsymbol{n} \in \mathbb{Z}^d} |\hat{\phi}(\boldsymbol{\omega} + 2\pi \boldsymbol{n})|^2 \le B^2 < \infty$$

Morever, the induced function space with $1 \leq p \leq +\infty$

$$V_{\phi,p} = \left\{ s(oldsymbol{r}) = \sum_{oldsymbol{k} \in \mathbb{Z}^d} c[oldsymbol{k}] \phi(oldsymbol{r} - oldsymbol{k}) : c \in \ell_p(\mathbb{Z}^d)
ight\}$$

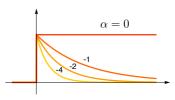
is a closed subspace of $L_p(\mathbb{R}^d)$ provided that $\sup_{r\in[0,1]^d}\sum_{k\in\mathbb{Z}^d}|\phi(r-k)|<+\infty.$

8

Construction of exponential B-spline

■ Differential operator $L = D - \alpha Id = P_{\alpha}$

Green's function: $\rho_{\alpha}(r) = \mathbb{1}_{+}(r)e^{\alpha r}$



■ Discrete version of operator (weighted differences)

$$\mathrm{L}_{\mathrm{d}} s(r) = \Delta_{\alpha} s(r) = s(r) - \mathrm{e}^{\alpha} s(r-1)$$
 Fourier multiplier: $1 - \mathrm{e}^{\alpha} \mathrm{e}^{-\mathrm{j}\omega}$

■ First-order exponential B-spline

$$\beta_{\alpha}(r) = \Delta_{\alpha} \rho_{\alpha}(r) = \mathbb{1}_{[0,1)}(r) e^{\alpha r}$$

$$\beta_{\alpha}(r) = \Delta_{\alpha} \rho_{\alpha}(r) = \mathbb{1}_{[0,1)}(r) e^{\alpha r} \qquad \longleftrightarrow \qquad \frac{1 - e^{\alpha} e^{-j\omega}}{j\omega - \alpha} = \frac{\widehat{L}_{d}(\omega)}{\widehat{L}(\omega)}$$

- → cardinal (exponential) splines of minimal support
- Space of cardinal P_{α} -splines: $V_0 = \operatorname{span}\{\beta_{\alpha}(\cdot k)\}_{k \in \mathbb{Z}}$

 eta_{lpha} generates an $\mathit{orthogonal}$ basis for the first-order cardinal exponential splines

9

6.4 GENERALIZED B-SPLINE BASIS

- B-spline properties
- B-spline factorization
- Polynomial B-splines
- Exponential B-splines
- Fractional B-splines
- Additional brands of univariate B-splines
- Multidimensional B-splines

Generalized B-spline

- Ingredients for B-spline construction
 - lacksquare Green's function of operator L: $ho_{
 m L}$
 - $\blacksquare \ \, \text{Discrete version of operator:} \ \ \, \mathrm{L}_{\mathrm{d}} s(\boldsymbol{r}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^d} d_{\mathrm{L}}[\boldsymbol{k}] s(\boldsymbol{r}-\boldsymbol{k}) \, \, \text{with} \, \, d_{\mathrm{L}} \in \ell_1(\mathbb{Z}^d)$
 - lacksquare Matching null-space constraint: $\mathrm{L_d} p_0(m{r}) = \mathrm{L} p_0(m{r}) = 0$ for all $p_0 \in \mathcal{N}_\mathrm{L}$

$$eta_{
m L}(m{r}) = {
m L_d}
ho_{
m L}(m{r}) = \mathcal{F}^{-1} \left\{ rac{\sum_{m{k} \in \mathbb{Z}^d} d_{
m L}[m{k}] {
m e}^{-{
m j}\langlem{k},m{\omega}
angle}}{\widehat{L}(m{\omega})}
ight\}(m{r})$$

Definition

The function β_L specified above is an admissible B-spline for L iff.

- 1) $\beta_{\mathrm{L}} \in L_1(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$
- 2) it generates a Riesz basis of the space of cardinal L-splines.
- Generalized B-spline expansion

$$s({\bm r}) \text{ is a cardinal L-spline } \quad \Leftrightarrow \quad s({\bm r}) = \sum_{{\bm k} \in \mathbb{Z}^d} c[{\bm k}] \beta_{\rm L}({\bm r} - {\bm k})$$

11

B-spline properties

■ Stable representation of cardinal L-splines

Formal definition:
$$V_{\rm L} = \left\{ s({m r}) \in L_2(\mathbb{R}^d) : {\rm L}s({m r}) = \sum_{{m k} \in \mathbb{Z}^d} a[{m k}] \delta({m r} - {m k}) \right\}$$

$$\Longrightarrow \qquad s({m r}) = p_0({m r}) + \sum_{{m k} \in \mathbb{Z}^d} a[{m k}] \rho_{\rm L}({m r} - {m k})$$

B-spline representation:
$$V_{\rm L} = \left\{ s(\boldsymbol{r}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^d} c[\boldsymbol{k}] \beta_{\rm L}(\boldsymbol{r} - \boldsymbol{k}) : c[\cdot] \in \ell_2(\mathbb{Z}^d) \right\}$$
 (2)

(2)
$$\Rightarrow$$
 (1): $Ls(r) = \sum_{k \in \mathbb{Z}^d} c[k] L\beta_L(r-k) = \sum_{k \in \mathbb{Z}^d} \underbrace{(c*d_L)[k]}_{a[k]} \delta(r-k)$

$$(1) \Rightarrow (2) = Completeness$$

Completeness of B-spline representation

Reproduction of Green's functions

$$L_{d}^{-1}\delta(\boldsymbol{r}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^{d}} p[\boldsymbol{k}]\delta(\boldsymbol{r} - \boldsymbol{k}) = \mathcal{F}^{-1} \left\{ \frac{1}{\sum_{\boldsymbol{k} \in \mathbb{Z}^{d}} d_{L}[\boldsymbol{k}] e^{-j\langle \boldsymbol{k}, \boldsymbol{\omega} \rangle}} \right\}$$

where $p[\cdot]$ is a sequence of slow growth

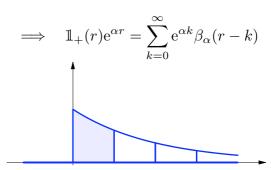
$$\implies \sum_{\boldsymbol{k} \in \mathbb{Z}^d} p[\boldsymbol{k}] \beta_{\mathrm{L}}(\boldsymbol{r} - \boldsymbol{k}) = L_{\mathrm{d}}^{-1} \beta_{\mathrm{L}}(\boldsymbol{r}) = L_{\mathrm{d}}^{-1} L_{\mathrm{d}} \rho_{\mathrm{L}}(\boldsymbol{r}) = \rho_{\mathrm{L}}(\boldsymbol{r})$$

Example: $L = P_{\alpha}$ with $Re(\alpha) < 0$

$$\rho_{\alpha}(r) = \mathbb{1}_{+}(r)e^{\alpha r} = \mathcal{F}^{-1}\left\{\frac{1}{\mathrm{j}\omega - \alpha}\right\}(r)$$

$$\hat{\Delta}_{\alpha}(\omega) = 1 - e^{\alpha - \mathrm{j}\omega}$$

$$p_{\alpha}[k] = \mathbb{1}_{+}[k]e^{\alpha k} = \mathcal{F}_{\mathrm{d}}^{-1}\left\{\frac{1}{1 - e^{\alpha}e^{-\mathrm{j}\omega}}\right\}[k]$$



13

Completeness (Cont'd)

$$eta_{\mathrm{L}} \in L_1(\mathbb{R}^d) \quad \Rightarrow \quad \hat{eta}_{\mathrm{L}}(oldsymbol{\omega}) = rac{\widehat{L}_{\mathrm{d}}(oldsymbol{\omega})}{\widehat{L}(oldsymbol{\omega})} ext{ is bounded and continuous }$$

 $\partial^{\boldsymbol{n}}\widehat{L}(\boldsymbol{0})=0, \text{ for all } \boldsymbol{n}\in\mathbb{N}^d, |\boldsymbol{n}|\leq N \quad \Leftrightarrow \quad \mathcal{N}_{\mathrm{L}} \text{ includes all polynomials of degree } N$

- Reproduction of null-space components
 - Consequence of null-space matching condition
 - $\hfill\blacksquare$ Reproduction of polynomials ensured by Strang-Fix conditions of order N

$$\partial^{\boldsymbol{n}}\widehat{L}_{\mathrm{d}}(2\pi\boldsymbol{k}) = 0 \quad \Rightarrow \quad \left\{ egin{array}{l} \widehat{eta}_{\mathrm{L}}(\mathbf{0}) = 1, \\ \partial^{\boldsymbol{n}}\widehat{eta}_{\mathrm{L}}(2\pi\boldsymbol{k}) = 0, \end{array}
ight. \quad \boldsymbol{k} \in \mathbb{Z}^d \backslash \{\mathbf{0}\}, \boldsymbol{n} \in \mathbb{N}^d \ \mathrm{with} \ |\boldsymbol{n}| \leq N^d \ \mathrm{with} \ |\boldsymbol{n}| \leq N^d$$

lacksquare Example: $\widehat{L}(\mathbf{0})=0 \quad \Rightarrow \quad \widehat{L}_{\mathrm{d}}(2\pi n)=0 \quad \Rightarrow \quad \mathrm{reproduction\ of\ constant}$

$$\sum_{\boldsymbol{k}\in\mathbb{Z}^d}\beta_{\mathrm{L}}(\boldsymbol{r}-\boldsymbol{k})=\sum_{\boldsymbol{n}\in\mathbb{Z}^d}\hat{\beta}_{\mathrm{L}}(2\pi\boldsymbol{n})\mathrm{e}^{\mathrm{j}\langle 2\pi\boldsymbol{n},\boldsymbol{r}\rangle}=\hat{\beta}_{\mathrm{L}}(\boldsymbol{0})=1 \quad \text{ (Partition of unity)}$$

B-spline factorization

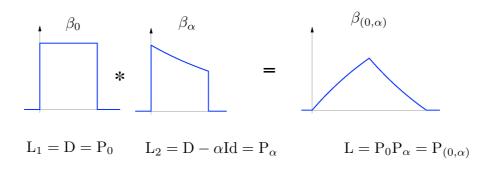
$$L = L_1 L_2 \quad \Rightarrow \quad \beta_L = \beta_{L_1} * \beta_{L_2}$$

Proposition

Let β_{L_1}, β_{L_2} be admissible B-splines for the operators L_1 and L_2 , respectively. Then, $\beta_L = \beta_{L_1} * \beta_{L_2}$ is an admissible B-spline for $L = L_1 L_2$ iff. there exists A > 0 such that

$$\sum_{\boldsymbol{n}\in\mathbb{Z}^d}\left|\hat{\beta}_{\mathrm{L}_1}(\boldsymbol{\omega}+2\pi\boldsymbol{n})\hat{\beta}_{\mathrm{L}_2}(\boldsymbol{\omega}+2\pi\boldsymbol{n})\right|^2\geq A>0.$$

for all $\omega \in [0, 2\pi]^d$. When $L_1 = L_2^{\gamma}$ for $\gamma \geq 0$, then the auxiliary condition is automatically satisfied.



15

Exponential B-splines

$$\begin{split} \mathbf{L} &= \mathbf{P}_{\pmb{\alpha}} = \mathbf{P}_{\alpha_1} \cdots \mathbf{P}_{\alpha_N} & \text{with} & \pmb{\alpha} = (\alpha_1, \dots, \alpha_N) \in \mathbb{C}^N \text{ and } \mathbf{P}_{\alpha_n} = \mathbf{D} - \alpha_n \mathrm{Id} \\ \mathbf{L}_{\mathrm{d}} &= \Delta_{\pmb{\alpha}} = \Delta_{\alpha_1} \cdots \Delta_{\alpha_N} & \text{with} & \Delta_{\alpha_n} \varphi(r) = \varphi(r) - \mathrm{e}^{\alpha_n} \varphi(r-1) \end{split}$$

$$\beta_{\alpha}(r) = \mathbb{1}_{[0,1)} \mathrm{e}^{\alpha r}$$

$$\beta_{\alpha}(r) = \left(\beta_{\alpha_1} * \beta_{\alpha_2} * \cdots * \beta_{\alpha_N}\right)(r) \qquad \longleftrightarrow \qquad \hat{\beta}_{\alpha}(\omega) = \prod_{n=1}^{N} \frac{1 - \mathrm{e}^{\alpha_n} \mathrm{e}^{-\mathrm{j}\omega}}{\mathrm{j}\omega - \alpha_n}$$

$$\beta_{\alpha}(r) = \Delta_{\alpha} \rho_{\alpha}(r) \quad \text{where} \quad \rho_{\alpha}(r) \text{: Green's function of } \mathrm{P}_{\alpha} \qquad \text{poles}$$

- lacktriangle Compactly supported in [0, N]; generate Riesz bases for cardinal P_{α} -splines
- lacktriangle Piecewise exponential with maximal smoothness: Hölder-continuous of order (N-1)

Fractional B-splines

 $L = D^{\gamma}$ (fractional derivative)

 $L_d = \Delta_+^\gamma$ (fractional differences)

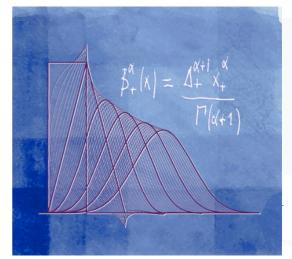
Fourier multiplier: $(j\omega)^{\gamma}$

Fourier multiplier: $(1 - e^{-j\omega})^{\gamma}$

$$\beta_{+}^{0}(r) = \Delta_{+}r_{+}^{0} \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad \frac{1 - e^{-j\omega}}{j\omega}$$

$$\beta_+^{\alpha}(r) = \frac{\Delta_+^{\alpha+1} r_+^{\alpha}}{\Gamma(\alpha+1)} \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad \left(\frac{1-\mathrm{e}^{-\mathrm{j}\omega}}{\mathrm{j}\omega}\right)^{\alpha+1}$$

One-sided power function: $r_+^\alpha = \left\{ \begin{array}{ll} r^\alpha, & r \geq 0 \\ 0, & r < 0 \end{array} \right.$



Degree $\alpha=\gamma-1$

17

Fractional (α , τ) B-spline

$$\beta_{\tau}^{\alpha}(t) = \mathcal{F}^{-1} \left\{ \left(\frac{1 - e^{-j\omega}}{j\omega} \right)^{\frac{\alpha+1}{2} + \tau} \left(\frac{1 - e^{j\omega}}{-j\omega} \right)^{\frac{\alpha+1}{2} - \tau} \right\}$$

Asymptotic formula

$$\lim_{\alpha \to +\infty} \beta_{\tau}^{\alpha}(t) = \frac{1}{\sqrt{2\pi}\sigma_{\alpha}} \exp\left(-\frac{(t-\tau)^2}{2\sigma_{\alpha}^2}\right)$$

with
$$\sigma_{\alpha} = \sqrt{\frac{\alpha+1}{12}}$$

B-spline of degree 1 and shift -1

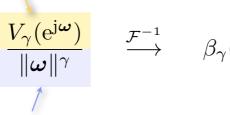
Polyharmonic B-splines

Fractional Laplacian:
$$(-\Delta)^{\frac{\gamma}{2}} \longleftrightarrow \|\omega\|^{\gamma}$$

Isotropic discrete Laplacian:
$$\frac{1}{6} \left(\begin{array}{ccc} -1 & -4 & -1 \\ -4 & 20 & -4 \\ -1 & -4 & -1 \end{array} \right) \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad V_2(\mathrm{e}^{\mathrm{j}\boldsymbol{\omega}})$$

Polyharmonic B-splines (Rabut, 1992; Van De Ville 2005)

Discrete operator: localization filter $V_{\gamma}(\mathrm{e}^{\mathrm{j} m{\omega}}) = V_{2}(\mathrm{e}^{\mathrm{j} m{\omega}})^{\frac{\gamma}{2}}$



Continuous-domain operator: $\widehat{L}(\boldsymbol{\omega})$

19