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Fourier-multiplier operators
Linear shift-invariant operator L : X (R?) — S’'(R9) with S(RY) C X (R?) C S’ (R?)
m Frequency response: L(w) = F{Lé}(w)

Forallp € X(RY), Lg(r) = F ' {@(w)L(w)}(r)

m Null space of L: N, = {po € X(RY) : L{po} = 0}

Proposition

If Lis LSl and p,(r) = e{*0mr™ € A, with 2o € C%, then Ay, does necessarily
include all exponential monomials of the form p,,, (1) = e(o™)r™ with m < n. If
M, is finite-dimensional, it can only consist of atoms of that particular form.

m Green’s function of L (if it exists): pr, such that Lpy, = ¢

1
Primary Green’s function:  pr,(r) = F 2 { —— » (7)
L(w)

Many equivalent Green’s function:  pr, + pg where pg € N1,




Spline-admissible operators

Definition
The Fourier-multiplier operator L : X(R9) — &'(R%) with frequency response L(w) is
called spline admissible if p;, = f‘l{l/z(w)} is an ordinary function of slow growth.

Definition
The Fourier-multiplier L(w) is of order y € R if there exists R € R and C' such that

Clw|” < |L(w)), for all |w| > R where ~ is critical.

m Example 1: D7 with frequency response (jw)” is spline-admissible of order

por )= 77 1= rm

m Example 2: Partial differential operator Ly = Z|n|<N an O™ with a,, € R?

= Existence of Green’s function follows from Malgrange-Ehrenpreis theorem
= Operator is called elliptic if EN(w) vanishes at origin and nowhere else

s If Ly is of order  than it is also called quasi-elliptic

Spline and operators

Definition
The function s(r) (possibly of slow growth) is called a cardinal L-spline

& Ls(r) = Z alkldo(r — k)

keczd

Definition
The function s(r) (possibly of slow growth) is a nonuniform L-spline with knots {7 } xcs

=3 Ls(r) = Z ard(r —ry)

keS

= s(r) :po("")JFZakPL("“—Tk)
kes

Spline theory: (Schultz-Varga, 1967; Jerome-Schumaker 1969)
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Innovation-based synthesis

L=4 =D = L~!:integrator

r N

pL =L7'6

o(t) — LY} —

>
| >

Impulse response of L~}

Translation invariance

5(t —to) LY — pL(t — to)
! T > | N
D and(t —tn) Hneanty s(t) =D _anpL(t —ta)+ po(1) ?
anp —tn N a
n - L—l{} . -
¢ 4 R -

Riesz bases

Definition: A sequence of functions {¢x ()} ez in Lo(RY) forms a Riesz basis if and
only if there exist two constants A and B such that

Allelle, <1 exdn(r)|py@ay < Bliclle, for any sequence ¢ = (cx) € La.
keZ

= Continuous-discrete norm equivalence: ||s||z, =< l|c||¢,
= Ensures stability of representation

= Implies linear independence of {¢(7)} ez

Orthogonality < A =B =1 (Parsevals relation)

Theorem: Let ¢(r) € Ly(R%) be a B-spline-like generator with Fourier transform ¢(w). Then,
{¢(r — k) }recze forms a Riesz basis with Riesz bounds A and B if and only if

0<A?< > [p(w+2mn)]> < B? < o0
nezad
Morever, the induced function space with 1 < p < +oco

Vop=145(r) =Y clklp(r—k):cc £,(27

kezd

is a closed subspace of L, (R?) provided that sup,.c( 1ja Y. peza [6(r — k)| < +oc.




Construction of exponential B-spline

m Differential operator L = D — ald = P, a=0
Green’s function: p, (1) = 14 (r)e®” 32
m Discrete version of operator (weighted differences)
Las(r) = Aqs(r) = s(r) —e“s(r — 1) Fourier multiplier: 1 — e®e™¢
m First-order exponential B-spline
F 1—e% 3%  Lg(w)
a(r) = Aapa(r) =1 r)e*” < - = =
B ( ) P ( ) [0,1)( ) iw—a L(w)
pole

w cardinal (exponential) splines of minimal support

m Space of cardinal P,,-splines: Vy = span{5,(- — k) }xez

B. generates an orthogonal basis for the first-order cardinal exponential splines

6.4 GENERALIZED B-SPLINE BASIS

B-spline properties

B-spline factorization

Polynomial B-splines

Exponential B-splines

Fractional B-splines

Additional brands of univariate B-splines

Multidimensional B-splines
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Generalized B-spline

m Ingredients for B-spline construction

= Green’s function of operator L: pr,

= Discrete version of operator: Lgs(r) = Z dy[k]s(r — k) with dp, € ¢1(Z4)
keZ
= Matching null-space constraint: Lgqpo(r) = Lpg(r) =0 forall pg € N,

> peza dL [K]e 3tk } (r)
L(w)

Br(r) = LapL(r) = F " {

Definition

The function fy, specified above is an admissible B-spline for L iff.
1) BL € Li(RY) N Ly(RY)
2) it generates a Riesz basis of the space of cardinal L-splines.

m Generalized B-spline expansion

s(r) is a cardinal L-spline <  s(r) = Z clk]fL(r — k)
kezd
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B-spline properties

m Stable representation of cardinal L-splines

Formal definition: V1, = {s(r) € Ly(R?) : Ls(r) = Z alklé(r — k)}

keczd

—  s(r)=po(r)+ > alklpL(r — k)

keczd

B-spline representation: Vi, = {s(r) = Z clk]fL(r — k) : c[] € Ez(Zd)}

keczd

2) = (1): Ls(r) = clk]LBL(r — k) = (cxdp)k]6(r — k)

(1) = (2) = Completeness

12




Completeness of B-spline representation

m Reproduction of Green’s functions

Ly'o(r) =Y plklo(r — k) = F { 1 }

fezd > keza du[klemitkw)

where p|-] is a sequence of slow growth

= ) plk]Bu(r — k) = Ly Bu(r) = Ly Lape(r) = pr(r)
kezd

m Example: L =P, with Re(a)) < 0
palr) = Ly(r)e = FH{ Lo ()

Balw) =1 - e* L) = Y K)
Palk] = Ly [Kle®® = Fi! {ﬁ} [K] k=0

13

Completeness (Cont’d)

. L
BLeLi(RY) = Brlw)= Ed(w) is bounded and continuous
w

87@(0) =0, foralm € N¢ |n| <N <« A includes all polynomials of degree N

m Reproduction of null-space components

= Consequence of null-space matching condition

= Reproduction of polynomials ensured by Strang-Fix conditions of order NV

BL(O) =1,

. ke ZN\{0},n € N?with |[n| < N

OmLa(21k) =0 = {

= Example: E(O) =0 = L4(2mn)=0 = reproduction of constant

> Bulr—k)= > Bu2rn)d®T™7 = 3(0) =1 (Partition of unity)

kecZzZad nezd
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B-spline factorization

L=LiLy = pBi=7/pL, *Pb,

Proposition
Let A1,, 0L, be admissible B-splines for the operators L; and Lo, respectively. Then,
Br, = P, * L, is an admissible B-spline for L = L; L iff. there exists A > 0 such that

. . 2
Z ‘BLl(w +2m) P, (w + 2m)| > A > 0.
nezd

forallw € [0, 27]%. When L; = LJ fory > 0, then the auxiliary condition is automatically
satisfied.

50 \ ﬁa \ ﬁ(O,a)
x = /\
Li=D=Pg Ly=D—-ald=P, L:POPa:P(O,a)

15

Exponential B-splines

L=Pqs=Pqs, - Paoy with o= (ay,...,ay) € C¥NandP,, =D — a,Id
La=Aa =Aa, - Aoy With  Ag, (1) = ¢(r) —e*p(r — 1)

Ba(r) = Lo,1e™” N .
5 1 —e%¥e™¥
Ba(r): (ﬂal*ﬁag*"'*ﬁaz\])(r) > Ba(w): HJ(A}T
n=1 i
#
Ba(r) = Aapa(r) where po(r): Green’s function of P, poles

First-order B-splines 2nd-order B-splines

a=(0,a)

a=(a)

= Compactly supported in [0, V]; generate Riesz bases for cardinal P, -splines

= Piecewise exponential with maximal smoothness: Holder-continuous of order (N — 1)
16




Fractional B-splines

L = D7 (fractional derivative) Fourier multiplier: (jw)”

Lq = A7 (fractional differences)

1 —e v

0 — A0 F
BL(r) T VR T

T i S el
T T (a+1)

One-sided power function: ~ r = {

Fourier multiplier: (1 — e™3«)”

Degreea =~v —1
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Fractional (o,7) B-spline

o = ot [ (L) T (1=
T Jjw —jw

= Asymptotic formula

lim (7(t) = L e (—M)

a—-+00 V2o, 202

a—+1

with o, =
12

)

B-spline of degree 1 and shift -1
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Polyharmonic B-splines

Fractional Laplacian: (—A)?  «2» l|lw||”

-1 -4 -1
1 F jw
Isotropic discrete Laplacian: ( —4 20 —4 ) — Va(e))

= Polyharmonic B-splines (Rabut, 1992; Van De Ville 2005)

Discrete operator: localization filter V., (e)) = Va(el*)?
V., (elw Fl
5 (e)
@l

/

Continuous-domain operator: L(w)
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