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Splines as a unifying mathematical concept
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Fourier-multiplier operators
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Primary Green’s function: ⇢L(r) = F�1

(
1

bL(!)

)
(r)

Frequency response:

bL(!) = F{L�}(!)

For all ' 2 X (Rd), L'(r) = F�1
�
'̂(!)bL(!)

 
(r)

Green’s function of L (if it exists): ⇢L such that L⇢L = �

Many equivalent Green’s function: ⇢L + p0 where p0 2 NL

Proposition

If L is LSI and pn(r) = ehz0,rirn 2 NL with z0 2 Cd
, then NL does necessarily

include all exponential monomials of the form pm(r) = ehz0,rirm with m  n. If

NL is finite-dimensional, it can only consist of atoms of that particular form.

Linear shift-invariant operator L : X (Rd) ! S 0(Rd) with S(Rd) ✓ X (Rd) ✓ S 0(Rd)

Null space of L: NL = {p0 2 X (Rd) : L{p0} = 0}



Spline-admissible operators

5

Example 1: D�
with frequency response (j!)� is spline-admissible of order �

⇢D� (r) = F�1

⇢
1

(j!)�

�
(r) =

r��1
+

�(�)

Definition

The Fourier-multiplier operator L : X (Rd) ! S 0(Rd) with frequency response

bL(!) is

called spline admissible if ⇢L = F�1{1/bL(!)} is an ordinary function of slow growth.

Definition

The Fourier-multiplier

bL(!) is of order � 2 R+
if there exists R 2 R+

and C such that

C|!|�  |bL(!)|, for all |!| � R where � is critical.

Example 2: Partial differential operator LN =
P

|n|<N an@n with an 2 Rd

Existence of Green’s function follows from Malgrange-Ehrenpreis theorem

Operator is called elliptic if bLN (!) vanishes at origin and nowhere else

If LN is of order � than it is also called quasi-elliptic

Spline and operators
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=) s(r) = p0(r) +
X

k2S

ak⇢L(r � rk)

Spline theory: (Schultz-Varga, 1967; Jerome-Schumaker 1969)

Definition

The function s(r) (possibly of slow growth) is called a cardinal L-spline

, Ls(r) =
X

k2Zd

a[k]�(r � k)

L =
d

dr

rk rk+1

ak

Definition

The function s(r) (possibly of slow growth) is a nonuniform L-spline with knots {rk}k2S

, Ls(r) =
X

k2S

ak�(r � rk)



Translation invariance 

Linearity 

Innovation-based synthesis
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L�1{·}

L�1{·}

L�1{·}

L = d
dt = D ) L�1

: integrator

�(t)

�(t� t0)

X

n

an�(t� tn)

⇢L = L�1�

Impulse response of L�1

⇢L(t� t0)

s(t) =
X

n

an⇢L(t� tn)+ p0(t) ?

Riesz bases
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Definition: A sequence of functions {�k(r)}k2Z in L2(Rd) forms a Riesz basis if and

only if there exist two constants A and B such that

Akck`2  k
X

k2Z
ck�k(r)kL2(Rd)  Bkck`2 for any sequence c = (ck) 2 `2.

Theorem: Let �(r) 2 L2(Rd) be a B-spline-like generator with Fourier transform �̂(!). Then,

{�(r � k)}k2Zd forms a Riesz basis with Riesz bounds A and B if and only if

0 < A2 
X

n2Zd

|�̂(! + 2⇡n)|2  B2 < 1

Morever, the induced function space with 1  p  +1

V�,p =

8
<

:s(r) =
X

k2Zd

c[k]�(r � k) : c 2 `p(Zd)

9
=

;

is a closed subspace of Lp(Rd) provided that supr2[0,1]d
P

k2Zd |�(r � k)| < +1.

Continuous-discrete norm equivalence: kskL2 ⇣ kck`2
Ensures stability of representation

Implies linear independence of {�k(r)}k2Z

Orthogonality , A = B = 1 (Parseval’s relation)



Construction of exponential B-spline
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-1
-2-4

↵ = 0

Discrete version of operator (weighted differences)

Lds(r) = �↵s(r) = s(r)� e↵s(r � 1)

➠  cardinal (exponential) splines of minimal support

Space of cardinal P↵-splines: V0 = span{�↵(·� k)}k2Z

�↵ generates an orthogonal basis for the first-order cardinal exponential splines

First-order exponential B-spline

�↵(r) = �↵⇢↵(r) = [0,1)(r)e
↵r

Fourier multiplier: 1� e↵e�j!

F ! 1� e↵e�j!

j! � ↵
=

bLd(!)
bL(!)

pole

Differential operator L = D� ↵Id = P↵

Green’s function: ⇢↵(r) = +(r)e↵r

6.4 GENERALIZED B-SPLINE BASIS
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■ B-spline properties

■ B-spline factorization

■ Polynomial B-splines

■ Exponential B-splines

■ Fractional B-splines

■ Additional brands of univariate B-splines

■ Multidimensional B-splines



Generalized B-spline
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�L(r) = Ld⇢L(r) = F�1

(P
k2Zd dL[k]e�jhk,!i

bL(!)

)
(r)

Definition

The function �L specified above is an admissible B-spline for L iff.

1) �L 2 L1(Rd) \ L2(Rd)

2) it generates a Riesz basis of the space of cardinal L-splines.

Generalized B-spline expansion

s(r) is a cardinal L-spline , s(r) =
X

k2Zd

c[k]�L(r � k)

Ingredients for B-spline construction

Green’s function of operator L: ⇢L

Discrete version of operator: Lds(r) =
X

k2Zd

dL[k]s(r � k) with dL 2 `1(Zd)

Matching null-space constraint: Ldp0(r) = Lp0(r) = 0 for all p0 2 NL

B-spline properties
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=) s(r) = p0(r) +
X

k2Zd

a[k]⇢L(r � k)

B-spline representation: VL =

8
<

:s(r) =
X

k2Zd

c[k]�L(r � k) : c[·] 2 `2(Zd)

9
=

;

(2) ) (1): Ls(r) =
X

k2Zd

c[k]L�L(r � k) =
X

k2Zd

(c ⇤ dL)[k]| {z }
a[k]

�(r � k)

(1) ) (2) = Completeness

(1)

(2)

Stable representation of cardinal L-splines

Formal definition: VL =

8
<

:s(r) 2 L2(Rd) : Ls(r) =
X

k2Zd

a[k]�(r � k)

9
=

;



Completeness of B-spline representation
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=)
X

k2Zd

p[k]�L(r � k) = L�1
d �L(r) = L�1

d Ld⇢L(r) = ⇢L(r)

Reproduction of Green’s functions

L�1
d �(r) =

X

k2Zd

p[k]�(r � k) = F�1

⇢
1P

k2Zd dL[k]e�jhk,!i

�

where p[·] is a sequence of slow growth

(a) (b)

=) +(r)e
↵r =

1X

k=0

e↵k�↵(r � k)

Example: L = P↵ with Re(↵) < 0

⇢↵(r) = +(r)e↵r = F�1
n

1
j!�↵

o

(r)

�̂↵(!) = 1� e↵�j!

p↵[k] = +[k]e↵k = F�1
d

n

1
1�e↵e�j!

o

[k]

Completeness (Cont’d)
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�L 2 L1(Rd) ) �̂L(!) =
bLd(!)
bL(!)

is bounded and continuous

@nbL(0) = 0, for all n 2 Nd, |n|  N , NL includes all polynomials of degree N

Consequence of null-space matching condition

Reproduction of polynomials ensured by Strang-Fix conditions of order N

@nbLd(2⇡k) = 0 )
(

�̂L(0) = 1,

@n�̂L(2⇡k) = 0,
k 2 Zd\{0},n 2 Nd

with |n|  N

Reproduction of null-space components

Example:

bL(0) = 0 ) bLd(2⇡n) = 0 ) reproduction of constant

X

k2Zd

�L(r � k) =
X

n2Zd

�̂L(2⇡n)e
jh2⇡n,ri = �̂L(0) = 1 (Partition of unity)



B-spline factorization
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L = L1L2 ) �L = �L1 ⇤ �L2

Proposition

Let �L1 ,�L2 be admissible B-splines for the operators L1 and L2, respectively. Then,

�L = �L1 ⇤ �L2 is an admissible B-spline for L = L1L2 iff. there exists A > 0 such that

X

n2Zd

����̂L1(! + 2⇡n)�̂L2(! + 2⇡n)
���
2
� A > 0.

for all ! 2 [0, 2⇡]d. When L1 = L�
2 for � � 0, then the auxiliary condition is automatically

satisfied.

€ 

∗

€ 

=

�0 �↵
�(0,↵)

L1 = D = P0 L2 = D� ↵Id = P↵ L = P0P↵ = P(0,↵)

poles

Exponential B-splines
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�↵(r) = [0,1)e
↵r

�↵(r) =
�
�↵1 ⇤ �↵2 ⇤ · · · ⇤ �↵N

�
(r)  ! �̂↵(!) =

NY

n=1

1� e↵ne�j!

j! � ↵n

�↵(r) = �↵⇢↵(r) where ⇢↵(r): Green’s function of P↵

2nd-order B-splines

↵ = (0,↵)

First-order B-splines

↵ = (↵)

L = P↵ = P↵1 · · ·P↵N with ↵ = (↵1, . . . ,↵N ) 2 CN and P↵n = D� ↵nId

Ld = �↵ = �↵1 · · ·�↵N with �↵n'(r) = '(r)� e↵n'(r � 1)

Compactly supported in [0, N ]; generate Riesz bases for cardinal P↵-splines

Piecewise exponential with maximal smoothness: Hölder-continuous of order (N � 1)



Fractional B-splines
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L = D�
(fractional derivative) Fourier multiplier: (j!)�

Ld = ��
+ (fractional differences) Fourier multiplier: (1� e�j!)�

�0
+(r) = �+r

0
+

F ! 1� e�j!

j!

�↵
+(r) =

�↵+1
+ r↵+

�(↵+ 1)
F !

✓
1� e�j!

j!

◆↵+1

One-sided power function: r↵+ =

(
r↵, r � 0

0, r < 0

...
...

Degree ↵ = � � 1
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Fractional (α,!) B-spline

■ Asymptotic formula

⇥�
⇥ (t) = F�1

⇤�
1� e�j⇤

j⌃

⇥�+1
2 +⇥ �

1� ej⇤

�j⌃

⇥�+1
2 �⇥

⌅

lim
�⇥+⇤

⇥�
⇥ (t) =

1⇤
2⇤⌅�

exp

�
�(t� ⇧)2

2⌅2
�

⇥

with ⌅� =

⇧
� + 1

12

12

⇥̂�
⇥ (⌃) =

�
1� e�j⇤

j⌃

⇥�+1
2 +⇥ �

1� ej⇤

�j⌃

⇥�+1
2 �⇥

lim
�⇥+⇤

⇥�
⇥ (t) =

1⇥
2⇤⌅�

exp

�
�(t� ⇧)2

2⌅2
�

⇥

with ⌅� =

⇤
� + 1

12

12



19

Polyharmonic B-splines

■ Polyharmonic B-splines        (Rabut, 1992; Van De Ville 2005)

Fractional Laplacian: (��)
�
2

F ! k!k�

Isotropic discrete Laplacian:

1

6

0

B@
�1 �4 �1

�4 20 �4

�1 �4 �1

1

CA

V�(ej!)

k!k�
F�1

�! ��(r)

F ! V2(ej!)

Discrete operator: localization filter V�(ej!) = V2(ej!)
�
2

Continuous-domain operator:

bL(!)


